Tomas Bata University in Zlín

Technology of Macromolecular Substances

Advanced polymer composite for sensorimotor insole in shoes

Téma: Pokročilý polymerní kompozit pro senzomotorickou vložku v obuvi

 

Topic: Advanced polymer composite for sensorimotor insole in shoes
Školitel/Tutor: Prof. Ing. Petr Sáha, CSc.
Konzultant/Consultant: Prof. Dr. Ing. Vladimír Pata, Ing. Tomáš Sáha, Ph.D.
E-mail: saha@utb.cz
Anotace:

Nošení nevhodné obuvi omezují přirozený vývoj dětí, který následně vedou k problémům se zády, koleními a kyčelními klouby. Zabránit těmto problémům lze používáním senzomotorických vložek, které senzorickou stimulací jsou schopny vyvolat motorickou odezvu. Cílenou stimulací dlouhých šlach a krátkých svalů nohy se mění receptorové signály ve svalovém bříšku a v přechodné oblasti mezi svalem a šlachou. Centrální nervový system na to reaguje změnou svalového napětí a držení těla.
Cílem dizertační práce bude navrhnout pokročilé polymerní kompozity pro individuální senzomotorické vložky, které budou podporovat zdravý vývoj dětského těla. Součastí práce bude rovněž analýza vlivu dynamického namáhání, teploty a vlhkosti na fyzikálně mechanické vlastnosti připravených polymerních kompozitů.

Annotation:  
Wearing unsuitable footwear limits children’s natural development, which in turn leads to problems with their backs, knees and hips. These problems can be prevented by using sensorimotor inserts, which are able to elicit a motor response by sensory stimulation. Targeted stimulation of the long tendons and short muscles of the leg changes the receptor signals in the muscle abdomen and in the transitional area between the muscle and the tendon. The central nervous system responds by changing muscle tension and posture.
The aim of the dissertation will be to design advanced polymer composites for individual sensorimotor, which will support the healthy development of the child’s body. The work will also include an analysis of the effect of dynamic stress, temperature and humidity on the physical and mechanical properties of prepared polymer composites.
Požadavky na studenta:
Znalosti z oblasti medicínských polymerů, biomechaniky a ortopedie.
Requirements:
Knowledge of medical polymers, biomechanics and orthopaedics.
Literatura/ Literature:
1.        Bedell, M.L., Navara, A.M., Du, Y., Zhang, S., Mikos, A.G., Polymeric Systems for Bioprinting, Chemical Reviews, 120 (19), 10744-10792 (2020).

2.        Wickramasinghe, S., Do, T., Tran, P., FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments, Polymers, 12 (7), art. no. 1529, 1-42 (2020).

3.        Kholgh Eshkalak, S., Rezvani Ghomi, E., Dai, Y., Choudhury, D., Ramakrishna, S., The role of three-dimensional printing in healthcare and medicine, Materials and Design, 194, art. no. 108940, (2020).

4.      Ghilan, A., Chiriac, A.P., Nita, L.E., Rusu, A.G., Neamtu, I., Chiriac, V.M., Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges, Journal of Polymers and the Environment, 28 (5), 1345-1367 (2020).

5.      V. Vladinovskis, Review of 3D Printing Technologies and Considerations on Their Use in Orthopedy, 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 1-6 (2020), doi: 10.1109/RTUCON51174.2020.9316483.

6.      Rahim, T.N.A.T., Abdullah, A.M., Md Akil, H., Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites, Polymer Reviews, 59 (4), 589-624 (2019).

7.      González-Henríquez, C.M., Sarabia-Vallejos, M.A., Rodriguez-Hernandez, J., Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications, Progress in Polymer Science, 94, 57-116 (2019).

8.      Teo, A.J.T., Mishra, A., Park, I., Kim, Y.-J., Park, W.-T., Yoon, Y.-J., Polymeric Biomaterials for Medical Implants and Devices, ACS Biomaterials Science and Engineering, 2(4), 454-472 (2016).

9.      Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E., Fiber-reinforced polymer composites: Manufacturing, properties, and applications, Polymers, 11 (10), art. no. 1667, (2019).

10.  Schirmeister, C.G., Hees, T., Licht, E.H., Mülhaupt, R., 3D printing of high density polyethylene by fused filament fabrication, Additive Manufacturing, 28, pp. 152-159 (2019).

11.  Ortiz-Acosta, D., Moore, T., 2018, ‘Functional 3D Printed Polymeric Materials’, in D. Sahu (ed.), Functional Materials, IntechOpen, London. 10.5772/intechopen.80686.

12.  Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R., Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews, 117 (15), 10212-10290 (2017).

13.  Klein, T., Lastovicka, O., Janura, M., Svoboda, Z., Chapman, G.J., Richards, J.,The immediate effects of sensorimotor foot orthoses on foot kinematics in healthy adults, Gait and Posture, 84, 93-101 (2021).

14.  Frydrýšek, K., Madeja, R., Pleva, L., et al. Biomechanika 2. 1. vyd. Ostrava: Ostravská univerzita, 2021.

 

 

 

Faculties and departments

Close